Math 202-Quiz I-2014
Previouses Problems

1) Use Gauss divergence Theorem carefully to find the outward flux $\iint_{\boldsymbol{S}} \boldsymbol{F} . \boldsymbol{n} \boldsymbol{d} \boldsymbol{\sigma}$ of the vector field $F=1 / \rho<9 x, y, 8 \rho^{-2} z>\quad$ where $\rho=\sqrt{x^{2}+y^{2}+z^{2}}$ across i) the surface $\rho=2$ ii) the surface surrounding the region $1 \leq \rho \leq 2$ between two spheres.
2) Use Stokes' Theorem to find the outward flux of CURL(F)
$\iint_{\boldsymbol{S}} \operatorname{Curl}(\boldsymbol{F}) . \boldsymbol{n} \boldsymbol{d} \boldsymbol{\sigma}$ of the vector field $\mathbf{F}=\langle 6 \mathbf{y}, 4 \mathbf{x}, \quad \mathbf{z}\rangle$ across the upper part of the ellipsoid $\mathbf{x}^{2}+2 \mathbf{y}^{2}+\mathbf{z}^{2}=16$ whose boundary C lies on the plane $\mathrm{z}=\mathrm{x}+4$.
Hints: C also lies on the cylinder $(\mathbf{x}+2)^{2}+\mathbf{y}^{2}=4 . \quad \mathrm{dz}=\mathrm{dx} \quad$ (but why?)

3a) Let $\mathbf{F}=\langle\mathbf{5 y}, \mathbf{8 x}, \mathbf{z}\rangle$ and let S be the open paraboloid $z=2\left(x^{2}+\mathrm{y}^{2}\right)-8 \& z \leq 0$.
Find $\iint_{\boldsymbol{S}} \boldsymbol{F} . \boldsymbol{n} \boldsymbol{d} \boldsymbol{\sigma}$ (where n is the outer normal vector to our surface)
by Gauss Divergence Theorem (by using a standard trick)

3b) Let $\mathbf{F}=\langle\mathbf{5 y}, \mathbf{8 x}, \mathbf{z}\rangle$ and let S be the open paraboloid $z=2\left(x^{2}+y^{2}\right)-8 \& z \leq 0$.
Find $\iint_{\boldsymbol{S}} \operatorname{Curl}(\boldsymbol{F}) . \boldsymbol{n} \boldsymbol{d} \boldsymbol{\sigma}$ (by any method) (where n is the outer normal vector to our surface) Reminder: The boundary C is on $\mathrm{z}=0$.

4a) Change the following D.E to a linear DE in standard form then STOP!

$$
\mathbf{x y}^{\prime}-\left(\mathbf{x}^{2}+1\right) \mathbf{y}^{5 / 4}=\left(\frac{\mathbf{x}^{2}}{\mathbf{x}^{4}+1}\right) \mathbf{y}
$$

4b) Change the following (non-exact) D.E to exact then STOP!

$$
\left(8-7 \mathbf{y}+\mathbf{x}^{3} \mathbf{e}^{\mathbf{x}}\right) \mathbf{d x}+\mathbf{x d y}=0
$$

5a) Simplify $\boldsymbol{\nabla} \cdot(\nabla f)$ and $\boldsymbol{\nabla} \cdot(\nabla f+f \nabla g)$ in terms of $f \& g$ and their partial derivatives.

5b) Set up the integrals (but do not evaluate)
to find the surface area of the ellipsoid $4 \mathbf{x}^{2}+9 \mathbf{y}^{2}+\mathbf{z}^{2}=16$
(Hint: You may use symmetry (with $\mathbf{z} \geq 0$)

6a) Change the DE $\left(7 y^{2}+2 x y\right) y^{\prime}=3 x^{2}+4 x y \sin \left(\frac{7 x+y}{x+2 y}\right)$
to a separable DE. Then STOP!!

6b) Change (by substitution) the DE $x y^{\prime}=y \sin (x y)$ into a separable DE Then STOP!

7a) If $\left\{y^{\prime}=f(x, y)\right.$; $\left.y(1)=1\right\}$ has 3 solutions, does this contradict our Existence/uniqueness Theorem for IVP?

7b) If $\left\{y^{\prime}=f(x, y)\right.$; $\left.y(1)=1\right\}$ has no solutions, does this contradict our Existence/uniqueness Theorem for IVP?

7c) If $\left\{y^{\prime}=f(x, y) ; \quad y^{\prime}(1)=1\right\}$ has no solutions, does this contradict our Existence/uniqueness Theorem for IVP?

7d) Find all 3 solutions of of the IVP: $\quad y^{\prime}=y^{1 / 3} ; y(1)=0$. :

